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Abstract

The effects of environmental humidity on the flow characteristics of PS304 feedstock have been
investigated. Angular and spherical BaF2-CaF2 powder was fabricated by comminution and by
atomization, respectively. The fluorides were added incrementally to the nichrome, chromia, and silver
powders to produce PS304 feedstock. The powders were dried in a vacuum oven and cooled to room
temperature under dry nitrogen. The flow of the powder was studied from 2 to 100 percent relative
humidity (RH). The results suggest that the feedstock flow is slightly degraded with increasing humidity
below 66 percent RH and is more affected above 66 percent RH. There was no flow above 88 percent
RH. Narrower particle size distributions of the angular fluorides allowed flow up to 95 percent RH. These
results offer guidance that enhances the commercial potential for this material system.

Introduction

It is common practice to dry plasma spray powders in order to enhance their flow properties, yet little
experimental data is available on this issue. To better understand the flow behavior of PS304 versus the
level of environmental humidity, flow tests were conducted in a controlled-humidity environment. PS304
is a plasma spray deposited coating for the reduction of friction and wear in turbomachinery applications
[1–6]. The feedstock for this coating is a powder blend consisting of nichrome, chromia, silver and
eutectic barium fluoride−calcium fluoride. Experience has indicated that the flow characteristics of the
powder blend are highly dependent upon the morphology [7] and size [8] of the BaF2-CaF2 constituent.
This paper reports the relationship between environmental humidity and the flowability of the PS304
feedstock powder. The effects of humidity were determined by comparing powder flow characteristics at
a constant temperature while varying relative humidity (RH). The overall goal of this investigation was to
better understand the effect of humidity on the flow characteristics of the feedstock with various BaF2-
CaF2 particle sizes and morphologies in order to enhance the commercial potential of the PS304 coating.

The ability to understand and predict powder flow behavior is important in many manufacturing
applications such as ceramics, powder metallurgy, powdered food, concrete and pharmaceuticals [9–13].
Therefore, this work is expected to help add insight to similar powder flow problems encountered in a
wide variety of industries.
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Background

The PS304 coating was developed at NASA Glenn Research Center [14] for the reduction of sliding
friction and wear in turbomachinery applications at temperatures from sub-ambient up to 650 °C. The
composition of this coating is 60wt% nichrome (80Ni-20Cr), 20wt% chromia (Cr2O3), 10wt% silver and
10wt% eutectic barium fluoride–calcium fluoride (70BaF2-30CaF2). Nichrome serves as a binder and,
along with chromia, provides wear resistance. Silver and BaF2-CaF2 are solid lubricants at low
temperature and high temperature, respectively. The coating is deposited on the sliding surfaces of the
components by plasma spray.

In the plasma spray process particles of the deposition material are propelled by a carrier gas through
a plasma flame, which is produced by the ionization of an inert gas [15]. The plasma heats the particles to
a molten or plastic state. The semi-solid particles then strike the substrate and quickly solidify. The
impact of subsequent particles increases the coating layer thickness. The feedstock is prepared in a
powdered form to facilitate control of the rapid melting and re-solidification of the coating material.
Where multi-component coating systems are to be deposited, the feedstock can be a powder blend
composed of the different coating constituents.

In a preliminary study [16], it was found that intermittent clogging of the plasma spray powder
feeding system was caused by the BaF2-CaF2 particles. To examine the effect that the particle shape of the
fluorides had on feedstock flowability, the fluorides were fabricated by comminution and by atomization.
Comminution produced angular BaF2-CaF2 particles and atomization produced spherical BaF2-CaF2

particles. PS304 feedstock was prepared with each of these fluorides.

Approach

Flow of a powder system is affected by particle size and size distribution, particle shape and shape
distribution, surface chemistry, density and the atmosphere surrounding the particles [17–27]. The effects
of BaF2-CaF2 particle shape, size and size distribution on the flowability of this powder blend are
described elsewhere [7–8].

A powder will not flow under the influence of gravity when the forces between individual particles
exceed the gravitational force acting on them. These forces can be described in terms of physical
mechanisms known as interparticle friction, geometrical interlocking, and cohesion due to solid bridging,
liquid bridging, and attractive electrostatic and van der Waals forces. The effects of interparticle friction
on the PS304 feedstock powder have been investigated recently [7–8].

Geometrical interlocking is enabled by the mechanical interlocking of particles above the discharge
orifice of the storage or feeding container, which blocks flow. Based on the work done by Langmaid and
Rose [25], flow stoppage due to geometrical interlocking is highly unlikely for the PS304 feedstock
powder due to the size of the particles in relationship to the orifice in the powder feed system. Based on
their work, the critical diameter required to prevent flow interruption is four times the equivalent diameter
of the particles in the powder system. The diameter of the outlet orifice of the Hall flowmeter (2.54mm),
however, is more than twenty times the equivalent diameter of the largest particles in the PS304 powder
blend (106µm). Moreover, the outlet of the plasma spray system feed hopper is many times larger than
that of the Hall funnel, which is true in general for gravity-fed hoppers.

Solid bridging due to solid state diffusion is also an improbable phenomenon due to the energy
required for self diffusion of the materials used in the PS304 coating versus the operating temperatures in
the plasma spray feed system. Of the remaining mechanisms, liquid bridging due to water meniscus
forces is the focus of the current investigation.
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When the vapor pressure po of condensed water on the surface of a particle approaches the partial
pressure p of the water vapor in the air, the atmospheric humidity approaches saturation and liquid
bridges may form at particle contact points [26]. A liquid bridge will be stable (i.e., it will not grow or
evaporate) when po = p or when

p

p

M p

RTo

w k= −






exp
ρ

where Mw is the molecular weight of water, pk is the pressure due to the water meniscus force, ρ is the
density of water, R is the gas constant for water vapor and T is the absolute temperature in Kelvin. At this
point, adsorbed water on the surface of the particles begins to form liquid bridges as shown in Figure 1a.
Due to the complexity of this system, a simplified case will be used to describe the mechanism more
precisely.

A simplified liquid bridge between two idealized spherical particles is shown schematically in
Figure 1b [27]. The tensile force due to the air-liquid interface is given by 2πbT where T is the surface
tension of the liquid. The tensile force due to the pressure drop inside the liquid is given by πb2P, where
P is the difference in pressure across the air-liquid interface. The pressure drop P can be calculated as the
product of the liquid surface tension and the curvature of the liquid surface. From the figure, the principal
radii of normal curvature are b and c. The curvature of the liquid surface is then c–1−b–1. Therefore, the
total force acting between the two particles is
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The total force due to liquid bridging in a powder is the sum of all the individual particle-particle
interactions.

The Hall flowmeter has been widely used as an indicator of the cohesive behavior of a powder system
[28–33]. This instrument was a reliable indicator of the flowability of feedstock powder for the studied
plasma spray system. The flow test measures the time required for a given amount of powder to exit a
calibrated funnel, which is designated the flow time. As the attractive interparticle forces increase in a
powder system, the flow time increases. The powders were first dried to remove adsorbed moisture.
Comparing the flow times of powder with respect to controlled RH levels gave an assessment of the
cohesiveness due to liquid bridging in the PS304 feedstock. Previous work [8] has also shown that the
size and size distribution of the BaF2-CaF2 particles can have a significant role in feedstock flow
characteristics. Therefore, PS304 was also prepared with narrower BaF2-CaF2 particle size distributions
for controlled-humidity flow tests.

Experimental Procedure

Figure 2 shows photomicrographs of the constituents of PS304. The nichrome particles (Figure 2a)
are 44 to 74µm in size and have a rounded shape. The chromia particles (Figure 2b) are 30 to 44µm in
size and have an angular morphology. The spherical silver particles (Figure 2c) are 45 to 100µm in size.
The nichrome, chromia and silver powders are available commercially and their sizes and shapes were not
modified in this study.

The BaF2-CaF2 constituent was fabricated by two different techniques to obtain two distinct particle
morphologies [7]. The angular fluorides, shown in Figure 3a, were fabricated by comminution of the
fused eutectic. Figure 3b shows spherical fluorides, which were fabricated by gas atomization. An equal
particle size distribution by mass of –140+325 mesh (45 to 106µm) powders was prepared of comminuted
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and of atomized BaF2-CaF2 powders, in addition to –140+170 mesh (90 to 106µm) and –270+325 mesh
(45 to 53µm) comminuted fluorides.

The BaF2-CaF2 powders were classified by screening according to ASTM standard specification
B 214–99. This procedure was performed using screens manufactured according to ASTM standard
specification E–11. The screens were stacked vertically in order of coarsest mesh to finest mesh. The
screen mesh sizes used were numbers 140, 170, 200, 230, 270, and 325. The screening instrument uses a
vertically oscillating column of air and a combination of vertical and horizontal tappers to separate the
particles according to size.

Two powder blends consisting of 60g nichrome, 20g chromia, 10g silver, and 10g of either angular or
spherical fluorides were prepared by mixing the constituents together in a 125mL high density
polyethylene bottle until the powder was well blended. Each powder was then spread evenly on the
bottom half of a glass petrie dish and placed in a vacuum oven for 12 hours at 59mm Hg (absolute
pressure) and 205 °C. The powders were then covered with the top half of the petri dish and transferred
immediately to a glove box purged with dry nitrogen gas. The powders were allowed to cool to room
temperature (∼22 °C) in the nitrogen atmosphere. To control RH in the glove box, the nitrogen gas inlet
was connected to a gas diffusion bubbler containing deionized water as shown schematically in figure 4.
The powder samples were exposed to each humidity level for 2 hours prior to flow testing according to
ASTM B 213–97. A digital stopwatch was used to measure the time it took for the entire 50g sample to
exit the funnel to the nearest 0.1s. The average and standard deviation of 5 consecutive tests were
reported.

The flow times of PS304 feedstock powders with 45 to 106 µm BaF2-CaF2 particle with respect to
humidity are shown in figure 5. The plot shows that flow times for the PS304 feedstock with angular
BaF2-CaF2 are higher than with spherical BaF2-CaF2. Three regions are labeled on figure 5 in order to
discuss changes in flow behavior. In Region I (0 to 66 percent RH), flow is only slightly degraded with
increasing humidity. Humidity has a greater effect on flow from 66 to about 88 percent RH (Region II)
and in Region III (>88 percent RH) no flow was observed. The flow times increase with increasing
relative humidity; this effect is less at lower humidity levels and increases at higher humidity, similar to
results reported by Peterson and Small [31–32]. As shown in figure 6, PS304 feedstock with narrower
size distribution 45 to 53µm and 90 to 106µm angular BaF2-CaF2 particle powders remained free flowing
up to 95 percent RH.

The results for all four powder blends are summarized in table 1. The standard deviation of flow time
measurements of powders containing spherical fluorides ranged from 0.1 to 0.2s, and from 0.1 to 0.4s for
powders with angular fluorides. Due to the classification method, the surface to volume ratio of the
angular and spherical fluorides was essentially the same. However, the angular fluorides may have larger
contact areas than the spherical particles due to the relatively irregular surfaces of angular particles.
Furthermore, the irregular shape of the angular fluorides makes the size of the contact area between
adjacent particles much more random. An angular particle can contact an adjacent particle at a point,
along a line, on a plane or on multiples and combinations of these contact modes. A spherical particle, on
the other hand, is likely to have only point contact with adjacent particles. For this reason, it is believed
that the variation in the measurements for powders with the spherical fluorides tends to be slightly lower
than with angular fluorides. The significance of this finding for process engineering is that spherical
fluorides may provide better control and repeatability of coating deposition over a typical range of
laboratory atmospheric conditions.

Results and Discussion
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The objective of this investigation was to study the effects of environmental humidity on the flow rate
of PS304 feedstock under the influence of gravity. Based on the results, the following conclusions were
made.

1. Humidity has a minor effect on the flowability of PS304 feedstock with 45 to 106µm fluorides
from 2 to 66 percent RH.

2. Above 66 percent RH, humidity had a more detrimental effect on powder flow and above
88 percent RH no flow was observed for feedstock containing either angular or spherical
45 to 106µm fluorides.

3. Feedstock flow could be obtained up to 95 percent RH using narrower size distributions of
angular fluorides (45 to 53µm or 90 to 106µm).

4. The variation in the flow time measurement for feedstock using spherical fluorides tends to be
lower than with angular fluorides.
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Table 1.—Summary of data from controlled humidity flow tests
Flow time increase,a

%
BaF2-CaF2 constituent size

(shape)

Region I Region II

Standard deviation of
measurements

Maximum humidity
for flow

45 to 106 µm (angular) 6.3 17 0.1 to 0.4s 88
45 to 106 µm (spherical) 3.3 25 0.1 to 0.2s 88
45 to 53 µm (angular) 8.6 9.7 0.1 to 0.3s 95
90 to 106 µm (angular) 10 8.6 0.1 to 0.2s 95
aFor the feedstock with 45 to 53µm and 90 to 106µm BaF2-CaF2, Region I and Region II are from 2 to 70 percent and
70 to 91 percent RH, respectively.

(a)

Liquid bridge with surface tension T

r

c

b

(b)

Figure 1.—Representation of liquid bridge formation between (a) Typical angular particles.
(b) Idealized spherical particles.

Liquid bridge
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(a) Nichrome

(b) Chromia

(c) Silver

Figure 2.—Nichrome, chromia, and silver constituents of PS304 feedstock powder
(original magnification 600X).
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(a)

(b)

Figure 3.—(a) Angular and (b) Spherical BaF2-CaF2 particles (original magnification 500X).
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Gas diffusion
bubbler Flowmeter

N2 Glove box

Glove port(s)

Powder
sample

Powder sample

RH/Temp
indicator

Dry N2

Wet N2

Figure 4.—Experimental setup for controlled humidity powder flow tests.
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Figure 5.—Flow times of PS304 feedstock powders with 45 to 106µm angular and
spherical BaF2-CaF2 particles as a function of percent relative humidity.
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Figure 6.—Flow times of PS304 feedstock with angular 45 to 53µm and 90 to 106µm
BaF2-CaF2 particles at higher humidity levels.
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